
1943-0663 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LES.2019.2932108, IEEE Embedded
Systems Letters

IEEE EMBEDDED SYSTEMS LETTERS, VOL. ??, NO. ?, JANUARY 2019 1

Enlarging I/O Size for Faster Loading of
Mobile Applications

Yongsoo Joo, Member, IEEE, Dongjoo Seo, Dongyun Shin, and Sung-Soo Lim, Member, IEEE Computer Society

Abstract—As the size of mobile applications grows rapidly, the
importance of application loading performance is increasingly
emphasized in mobile devices. However, current OSes rely on
demand paging to load the working set of applications into
memory, which typically generates small size I/Os that are not
handled well by mobile flash storage devices.

We propose an aggressive merging scheme, which consists of an
explicit application loading method and a series of optimization
techniques: I/O reordering, I/O merging, and I/O padding. The
key idea behind our scheme is to enlarge I/O size for application
loading to increase the effective storage throughput. Experiments
show that our scheme effectively increases the average I/O size
by 5.6X, leading to 30% reduction of working set loading time.

Index Terms—User perceived performance, application loading
performance, mobile application, flash storage.

I. INTRODUCTION

APPLICATION loading time critically affects user-
perceived performance, and thus it has been one of the

key performance metrics for computing systems. A delay
between 100 and 1,000 ms is known to be perceptible, and
a delay over 1,000 milliseconds makes users uncomfortable
[1]. As the size of mobile applications grows rapidly, the need
for optimizing application loading performance is expected to
continue or even increase in the foreseeable future.

Modern mobile OSes rely on demand paging to bring code
and data pages of user applications into memory. Specifically,
it generates I/O requests only for the requested but missed
pages. While performing well in most situations, it may reveal
the weakness of an underlying mobile storage device such
as eMMC and UFS for abruptly changing working sets, e.g.,
launching applications or resuming background applications.

The I/O behavior of demand paging is represented as low
queue depth and small random read I/Os. First, it does not
issue multiple I/Os concurrently because the next page fault
can occur only after the current page fault has been handled.
In other words, the maximum number of outstanding I/O
requests, or queue depth, is effectively limited up to one.
Second, it issues read I/Os only for the missed page, and thus
the resulting I/O size becomes 4 KB, the size of a single page.

Unfortunately, such an I/O pattern does not achieve the
maximum I/O throughput of flash storage devices consisting

The authors are with School of Software, Kookmin University, Seoul, 02707
South Korea. e-mail: sslim@kookmin.ac.kr.

This work was supported by Institute of Information & Communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2014-3-00035), and by the National Research
Foundation of Korea(NRF) grant funded by the Korea government (MSIT)
(No. 2018R1D1A1B05044558). Sung-Soo Lim is the corresponding author.

Manuscript received March ??, 2019; revised April ??, 2019.

of multiple flash dies. Each die provides lower throughput, but
two or more can be activated at the same time to achieve higher
throughput. One way to accomplish this is to make a large size
I/O, as it is split and sent to the associated flash dies at a time.
Another way is to increase the number of outstanding I/Os that
are processed simultaneously in the storage. However, demand
paging does not exploit either of the two.

We propose an aggressive merging scheme, which consists
of an explicit application loading method and a series of
optimization techniques: I/O reordering, I/O merging, and I/O
padding. Our key idea is to enlarge I/O size for application
loading to increase the effective storage throughput.

II. RELATED WORK

Linux readahead [2] is a sequential prefetching technique
that detects a sequential I/O pattern to issue readahead I/O
requests before next page faults occur. While it can also
improve application loading to some extent, it cannot perform
global optimization over an entire working set. Hint-based I/O
optimization techniques [3][4] make an accurate guess for fu-
ture I/O requests using hints provided by the target application.
However, this approach requires modifying application code.
On the other hand, history-based techniques predict future I/O
requests of applications by analyzing their past I/O requests,
requiring no modification of application code. Application
prefetching techniques [5][6][7] and our method fall in this
category. While the application prefetchers focus on improving
application startup performance, our method is applicable to
quick switching between background and foreground appli-
cations as well. The idea of explicit loading was previously
introduced by Windows Prefetch [6], but it applies only I/O
reordering in each file to minimize disk head movement. In
contrast, our method works at block level, allowing inter-file
optimization, and is effective for flash storage as well.

III. AGGRESSIVE MERGING SCHEME

Explicit application loading. Demand paging implicitly loads
an application by fetching only the missed page in an on-
demand manner. While working great in keeping track of
a continuously changing working set, it severely limits the
chance for I/O optimization as the optimization window size is
limited to a single I/O request. To overcome the limitation, we
suggest to explicitly load the working set at once as follows:

1) Profile the working set of a target application.
2) Decide when to initiate application loading.
3) Pause the target application.
4) Load its working set with I/O optimization techniques.

1943-0663 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LES.2019.2932108, IEEE Embedded
Systems Letters

IEEE EMBEDDED SYSTEMS LETTERS, VOL. ??, NO. ?, JANUARY 2019 2

5) Resume the target application.

Profiling working sets. Our approach is complementary to
demand paging in that it is applicable only when a working set
is predetermined by profiling. Such situations include starting
up applications and resuming background applications.

First, for application startup, we can use I/O tracing tools
such as blktrace [8] to obtain a working set immediately after
launch completion. Specifically, we flush the page cache and
capture the I/O requests generated during the launch process.
Our previous work [5] has demonstrated that this method
yields a deterministic set of pages referenced during launch,
not varying much across different captures.

Second, for an application returning from background to
foreground, the working set immediately before the application
enters background becomes of interest. Here we assume that
most pages, if not all, in the working set are evicted from
memory while the application stays in background. This set
of evicted pages can be tracked in the same way the Linux
swap system [9] does. In this work, we deal with only the first
case, leaving the second for future work.
Initiation of application loading. An OS can precisely
detect when a user triggers application startup or activates a
background application. However, it is not always beneficial
to initiate application loading upon such events. For example,
when most pages of the working set remain in memory,
triggering application loading will only delay launching or
activating the application. The OS should check the page cache
status and selectively initiate our method, e.g., only when the
portion of the working set residing in the cache is below a
threshold. In this work, we assume a cold start scenario, i.e., no
page of the working set is in memory, to focus on developing
I/O optimization techniques for application loading.
I/O reordering and I/O merging. I/O reordering and I/O
merging have long been performed by I/O schedulers [10] for
pending I/Os in a queue. While effective for nonblocking I/Os
such as write requests and async reads, the I/O schedulers
have little effect on application loading processes, which are
dominated by blocking read I/Os. Specifically, the next I/O can
be issued only after the current blocking read I/O is completed,
limiting the maximum number of blocking read I/Os appearing
in the I/O queue to one.

Our explicit application loading method has access to a
predetermined working set before issuing actual I/O requests,
allowing a perfect reordering of all of its page chunks. Ac-
cording to our observation, I/O reordering itself does not affect
much the working set loading time on flash storage, which is
also reported in prior work [11]. However, it provides more
chances for I/O merging, which in turn significantly increases
the I/O size while loading the working set.
I/O padding. I/O reordering and I/O merging are conservative
in that they do not change the amount of data in the working
set. We relax this constraint by deploying an I/O padding
technique successively to I/O reordering and I/O merging. It
is aggressive in that padding pages can be inserted between
adjacent chunks, increasing the amount of data transferred.
In this way, I/O padding further increases I/O size, thus
improving the effective I/O throughput of application loading.

In order for the I/O padding technique to be successful,
the benefit from the enlarged I/Os should exceed the overhead
due to padding pages. An optimal padding decision should
consider the followings:

• Padding candidate sizes;
• The sizes of the surrounding chunks for each candidate;
• The padding decisions of nearby padding candidates;
• Storage I/O throughput for different transfer sizes.

In the following section, we present an efficient I/O padding
technique based on a dynamic programming model.

IV. PROPOSED I/O PADDING TECHNIQUE

Problem statement. After completing I/O reordering and I/O
merging, the working set of a target application with n chunks
is given as W = (b0,b1, . . . ,bn−1), such that bis are chunks
of contiguous pages sorted in ascending LBA (logical block
address) order, and every pair of two adjacent chunks has a gap
equal or greater than a single page size. Given the input W0,n−1,
we can define a padding vector P = (p0, p1, . . . , pn−2), where
pi is a padding candidate for the gap between bi and bi+1.
Each pi is set to one if one decides to insert padding pages
between bi and bi+1. For example, P = (1,1, . . . ,1) means that
all the gaps in W are filled with padding pages, generating a
single I/O request that covers the entire working set.

Now, we state the padding decision problem as follows:
Problem 1: For a given working set W , find the optimal

padding vector P such that the loading time of the target
application is minimized.

Dynamic programming model. We solve Problem 1 with
dynamic programming. First, we denote the subset of W
as Wi, j = (bi, . . . ,b j), and its padding vector as Pi, j−1 =
(pi, pi+1, . . . , p j−1). Next, let read(i, j) be the storage access
time to load Wi, j with Pi, j−1 = (1,1, . . . ,1), i.e., a single I/O
request covering the span from bi to b j. Finally, let t(i, j) be
the time to load Wi, j with the optimal padding vector Pi, j−1.

In Equation (1), we identify the relationship between t(i, j)
and its sub-problems t(s, t), where i ≤ s ≤ t ≤ j.

t(i, j) =



read(i, i), if i = j

min



read(i, j)
t(i, i)+ t(i+1, j)

t(i, i+1)+ t(i+2, j)
...

t(i, j−2)+ t(j−1, j)
t(i, j−1)+ t(j, j)

, if i < j
(1)

First, if i = j, there is no opportunity for padding as there is
only one chunk bi, and thus t(i, j) returns the time to load
bi. Second, if i < j, a padding vector Pi, j−1 is initialized as
(X ,X , . . . ,X), where X represents a padding status which is not
determined yet. The min function then finds the minimum time
to load Wi, j by comparing the following padding decisions:

1) Pad all candidates, i.e., Pi, j−1 =(1,1, . . . ,1), where t(i, j)
becomes read(i, j).

2) Choose a single candidate ps (i ≤ s ≤ j−1), and set ps
to 0 while the remainder to 1. For example, if s is set to

1943-0663 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LES.2019.2932108, IEEE Embedded
Systems Letters

IEEE EMBEDDED SYSTEMS LETTERS, VOL. ??, NO. ?, JANUARY 2019 3

Fig. 1. A part of the logical block map showing the result of I/O padding
(application: Messenger).

i+1, Pi, j−1 becomes (X ,0,X , . . . ,X) and t(i, j) becomes
t(i, i+1)+ t(i+2, j).

Note that t(i, j) can be calculated only after completing
evaluation of the underlying sub-problems (e.g., t(i, i+1) and
t(i + 2, j) for ps with s = i + 1). We can use either a top-
down approach with memoization or a bottom-up approach
with tabulation to evaluate all necessary sub-problems. Both
approaches can greatly reduce computation overhead by eval-
uating each sub-problem no more than once. Finally, for the
given input W0,n−1, we can obtain the optimal padding vector
P0,n−2 by solving Equation (1) for t(0,n−1).
Storage performance model. Equation (1) requires a storage
performance model that returns read access time for a given
starting LBA and size. We develop a measurement-based
model that uses only I/O size to estimate read access time.
In particular, for a given I/O size, we repeat measuring
read latency values with randomly generated LBAs. Among
the obtained values, we choose median rather than mean to
mitigate the effect due to outliers.

Note that it takes too much time to perform measurement for
all possible I/O sizes. In our experimental setup, read access
time increased almost linearly with size for I/O requests bigger
than 128 KB. Thus, we construct a lookup table for I/O sizes
up to 128 KB, while using linear extrapolation for larger I/Os.

V. EVALUATION

Experimental setup. We chose a Google Nexus 5 smartphone
with 32 GB of eMMC flash storage as a test platform and
chose 16 Android applications for a test set. We captured I/O
traces using blktrace [8] while launching them, and run our
aggressive merging scheme to obtain padding solutions. For
the application loading module, we developed an emulator us-
ing pread [12] system call, which sends I/O requests specified
in the given working set to the eMMC storage and measures
actual time spent on the device.
I/O padding result. Fig. 1 shows that I/O padding effec-
tively enlarges the size of contiguous block chunks, and thus
increasing I/O size while loading Messenger. For all the
test applications, average I/O size was increased by 5.6X.
Fig. 2 depicts how the I/O padding technique makes padding
decisions for different size of candidates. It appeared to prefer
smaller candidates to be padded, while it selected only some of
the same size candidates to be padded, implying that padding
the others could not reduce loading time.
Application loading time. Fig. 3 shows the measured loading

0%

20%

40%

60%

80%

100%

4 36 68 100 128

Padding candidate size (KB)

P
o
rt

io
n

(a) Messenger

Padding taken
Padding not taken

4 36 68 100 128

Padding candidate size (KB)

P
o
rt

io
n

(b) Temple Run 2

Fig. 2. The breakdown of padding decision. Padding candidates bigger than
128 KB are omitted as all of them were not taken.

time with different I/O optimizations. I/O reordering itself
had little impact on loading time, but allowed I/O merging
to reduce loading time by 19.3%. I/O padding could further
reduce loading time to yield a total reduction of 29.9%. The
performance of I/O merging and padding appeared to be
significantly different for different applications. For Temple
Run 2, I/O merging achieved 27.1% reduction, while the
additional reduction by I/O padding was only 2.9% point.
In contrast, for Messenger, I/O merging achieved only 8.0%
reduction, but I/O padding could add 25.1% point reduction.

Interference by background I/O. We repeated the same test
of Fig. 3 with running three different background processes
to observe how background I/O affects application loading
time. Video playback, FTP download, and application update
represent weak, medium, and high I/O intensity, respectively.
To reproduce deterministic I/O interferences, we captured the
background I/O sequence of each process using blktrace [8],
and then abstracted it in terms of R/W ratio, I/O per seconds,
and I/O size. Finally, we configured fio [13] accordingly and
measured loading time to obtain the result of Fig. 4. It shows
that the higher the background I/O intensity, the greater the
relative performance gap between the baseline and our method.

Interference by Linux readahead. Both our method and
Linux readahead perform optimization by modifying original
I/O requests issued by applications, and thus two can affect
each other. Fig. 5 shows that selectively disabling readahead
during working set profiling leads to a further performance
gain of I/O padding. However, even temporarily disabling
readahead can severely degrade I/O performance of other
processes, as shown in the baseline configuration. Hence, we
plan to expand our method to fully exploit this chance for
optimization while not affecting the runtime I/O performance
achieved by Linux readahead.

Computation overhead. I/O reordering and I/O merging spent
negligible computation time for our test applications, e.g.,
14 ms for Messenger. On the other hand, I/O padding runs
dynamic programming, which incurred considerable time and
space overhead. Hence, we split the original working set into
multiple subsets at every occurrence of padding candidates
greater than 128 KB, without affecting solution quality (refer
to Fig. 2). For Messenger, we could reduce the table size of
the dynamic programming from 555,985 (2,171 KB) to 3,756
(15 KB), and its computation time from 213s to 0.07s.

Padding overhead. Padding pages may incur both memory

1943-0663 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LES.2019.2932108, IEEE Embedded
Systems Letters

IEEE EMBEDDED SYSTEMS LETTERS, VOL. ??, NO. ?, JANUARY 2019 4

Fig. 3. Average loading time of 16 Android applications, for each of which ten measurement were performed. Baseline: original I/Os requested by demand
paging. Reordered, Merged, Padded: optimization techniques are applied cumulatively from I/O reordering, I/O merging, and I/O padding.

Fig. 4. Application loading performance under background I/O interference.
All the 16 applications were loaded in succession.

Fig. 5. The effect of readahead on the application loading performance.
Readahead was selectively enabled or disabled only for profiling phases. When
measuring application loading time, readahead was always enabled.

and energy overhead as they are not originally included in
the working set of applications. For all test applications,
the total size of padding pages was 85.0 MB (7.4% of the
original working set), which may evict other pages used by
other applications. We avoided this problem by discarding
padding pages as soon as they are loaded into the application
loading module. Hence, only the pages in the working set are
eventually sent to the OS page cache. Nevertheless, the energy
consumption of the flash storage might change because the

Fig. 6. Energy and power comparison of different configurations.

I/O requests themselves for padding pages are not eliminated.
Hence, we measured the energy consumption of loading the
working sets of all test applications. We used the Battery
Historian tool and repeated experiments 200 times for each
configuration. Fig. 6 shows that contrary to expectation, I/O
padding could reduce energy consumption by a third, implying
that enlarging I/O size improves not only the I/O throughput
of eMMC storage but also its energy efficiency.

VI. CONCLUSION

In this paper, we measured the read throughput of mobile
storage for different I/O sizes, leading to the insight that
enlarging I/O size can be an effective way to improve appli-
cation loading performance. We then proposed an aggressive
merging scheme, which consists of an explicit application
loading method together with I/O reordering, I/O merging, and
I/O padding. Finally, we developed a dynamic programming
model to find the optimal padding decision for I/O padding.
Experiments show that our scheme increased the average I/O
size by 5.6X on a Google Nexus 5 smartphone, leading to
30% reduction of application loading time.

REFERENCES

[1] L. C. Hogan, Designing for Performance: Weighing Aesthetics and
Speed. O’Reilly Media, Inc., 2014, pp. 11–11.

[2] W. Fengguang, X. Hongsheng, and X. Chenfeng, “On the Design of a
New Linux Readahead Framework,” SIGOPS Oper. Syst. Rev., vol. 42,
no. 5, pp. 75–84, Jul. 2008.

[3] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka,
“Informed Prefetching and Caching,” in Proc. SOSP, 1995, pp. 79–95.

[4] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson,
“Informed Mobile Prefetching,” in Proc. MobiSys, 2012, pp. 155–168.

[5] Y. Joo, J. Ryu, S. Park, and K. G. Shin, “FAST: Quick Application
Launch on Solid-State Drives,” in Proc. FAST, 2011, pp. 259–272.

[6] M. E. Russinovich and D. Solomon, Microsoft Windows Internals,
4th ed. Microsoft Press, 2004, pp. 458–462.

[7] Y. Joo, S. Park, and H. Bahn, “Exploiting I/O Reordering and I/O
Interleaving to Improve Application Launch Performance,” ACM Trans.
Storage, vol. 13, no. 1, pp. 8:1–8:17, Feb. 2017.

[8] J. Axboe and A. D. Brunelle, Blktrace User Guide, February 2007.
[9] S. Bokhari, “The Linux Operating System,” Computer, vol. 28, no. 8,

pp. 74–79, 1995.
[10] J. Axboe, “Linux Block IO—present and future,” in Proc. Ottawa Linux

Symp., 2004, pp. 51–61.
[11] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux Block

IO: Introducing Multi-Queue SSD Access on Multi-Core Systems,” in
Proc. SYSTOR, 2013, pp. 22:1–22:10.

[12] S. Bhattacharya, S. Pratt, B. Pulavarty, and J. Morgan, “Asynchronous
I/O Support in Linux 2.5,” in Proc. Linux Symp., 2003, pp. 371–386.

[13] J. Axboe, “Fio-flexible io tester,” http://freecode.com/projects/fio.

